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Chaotic motion of nonspherical particles settling in a cellular flow field
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Small, spheroidal particles undergo a tumbling motion as they settle out under gravity through a fluid flow.
This motion is in response to the fluid forces that act on the particle causing it to rotate due to the local fluid
vorticity and rate of strain. In this paper the nonlinear system of differential equations governing the particle
motion in a spatially periodic, cellular flow field is considered. The motion of spherical particles is completely
regular, and in some regions of the flow they may be permanently suspended. Using recent results on volume-
preserving maps, it is shown that this behavior can persist for nonspherical particles. More usually the tumbling
motion is chaotic. This is characterized by results on Poinsattions of the motion and determination of
Lyapunov exponents. The response to flow vorticity and rate of strain is analyzed for both full three-
dimensional motion and restricted planar motion to determine the main factors governing the chaotic motion.
[S1063-651%97)01111-2

PACS numbe(s): 47.52:+], 47.55.kf, 05.45+b

[. INTRODUCTION much less information available on the characteristics of
their motion. Spheroidal particles and ellipsoids of revolu-
A recurring question in the study of particle settling is tion are the simplest examples of nonspherical particles to
whether or not particles can be held in suspension by a flonconsider, and their orientation can be characterized by a
The gravitational settling of small, spherical particles in asimple unit vectorm along the axis of symmetry. An early
steady convection flow was studied by Stommg&]. He  study of the motion of nonspherical particles in a fluid was
showed that if the convective updraft was greater than théhe paper by Jeffrej13]. He considered an ellipsoidal par-
terminal fall speed of the particle then in a region of the flowticle which was neutrally buoyant and was placed in a uni-
particles will be permanently held in suspension, as illusform shear flow. The forces and moments acting on the small
trated in Fig. 1. Later work by Maxey and Corrdig] and  particle were determined from the low Reynolds number
Maxey [3] revealed that if the inertial effects of the particles Stokes flow produced locally by the particle moving relative
are included the permanent suspension is no longer mairte the flow. In this example the center of the particle moved
tained and all the particles eventually settle out. Unlike thewith the local fluid velocity but the particle turned continu-
above studies, Smith and Spiedi] observed a chaotic mo- ously in response to the vorticity and the rate of strain of the
tion by introducing spherical particles into an unsteady cel-uniform shear flow. Extensions to these results are given by
lular flow field. Crisantiet al. [5] quantitatively studied the Bretherton[14] and Happel and Brenngd5] for particles
motion of spherical particles in a steady two-dimensionalwithin the Stokes regime. Extending the results of Jeffrey
cellular flow where the particles exhibited strong inertia in[13] for single particles, Davi§l6] has considered the aver-
their response to local fluid velocity. Here too they foundage sedimentation velocity in a dilute suspension of axisym-
that the particle motion was chaotic for particles slightly metric particles suspended in a simple shear flow at low-
heavier than the fluid. This kind of chaotic motion, of either particle Reynolds numbers. He noted the dependence of the
discrete particles or of fluid elements, known as Lagrangiasedimentation of the particles on their shapes and orienta-
turbulence[6] has also been analyzed in the steady incomtions and the rotation of the particles by the imposed flow
pressible three dimension®BC flow of Arnold [7] by field.
Dombreet al.[8]. They observed that the Lagrangian motion  The motion of rigid spheroidal particles settling under
of fluid elements in ABC flow is chaatic in the neighborhood gravity in a cellular flow field was first investigated by Mal-
of the heteroclinic lines connecting the unstable fixed pointslier and Maxey[17]. Along with both settling motion of
More recent studief,10] on the motion of solid particles in some particles and a permanent suspension of others, they
the ABC flow have shown that both small- and large-particledetected the onset of chaotic motion at large particle aspect
inertia, as compared to a characteristic flow time scale, elimiratios. In a separate context a suspension of neutrally buoy-
nated chaos but for intermediate particle inertia the Lagrangant, nonsettling, spheroidal particles has been used as an ex-
ian motion was chaotic. ample of a fluid with complex microstructure. Szeri, Wig-
Frequently the particles encountered in engineering ogins, and Leal18] studied this for the dynamical behavior of
natural contexts such as the formation and growth of crystalan orientable microstructure in a general two-dimensional
in a liquid melt, ice crystal growth in atmospheric clouds fluid flow. They emphasized the fact that the usual tools for
[11], or the formation of crystals in a cooling body of magmaanalysis of an autonomous system should not be casually
[12] are nonspherical. Yet despite their prevalence there iapplied to the analysis of a nonautonomous system. They
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2.0 ————— tant factor is the coupling between the orientation and the
- instantaneous settling velocity. While the various physical
parameters have specific relations to the particle aspect ratio

| ] of a spheroid[17] it is useful to investigate more general
15 1 i values to determine the essential features of the dynamics.
For example this will allow us to consider separately the
particle response to flow vorticity and to rate of strain. The
equations of particle motion and the flow field are given in
Sec. Il, introducing both the full three-dimensional problem
and the motion restricted to a vertical plane. In Sec. Il the
latter restricted problem, which involves the particle position
in the vertical plane and an orientation angle, is expressed as
a three-variable system that matches recent theory developed
by Mezic and Wigging20] for extended one action—two-
angle-variable, volume-preserving differential equations.
This allows us to use recent results on volume-preserving

i maps in determining the persistence of particle suspension
00 and regular motion for spheroidal particles. The restricted
problem is further considered in Sec. IV, where the Poincare
sections and values of the Lyapunov exponents show the
separate regions of regular and chaotic motion in the flow.
Finally, in Sec. V, results for the full, unrestricted motion are
discussed.

x, 101 .

0.5 1

(a) X,

II. EQUATIONS OF MOTIONS

In this paper we consider the motion of a small axisym-
metric particle turning in response to the local velocity gra-
dient and the changes in gravitational settling velocity that
occur as the particle turns. As in the paper by Jeffdr3),
the particle is assumed to be sufficiently small that the local
disturbance flow due to the presence of the particle is a low
Reynolds number Stokes flow. The fluid force and torque on
the particle are then linearly related to the relative velocity of
the particle to the surrounding fluid, the angular velocity, and
the local velocity gradient of the imposed flow field. With
negligible particle inertia the fluid force balances the result-
ant force of gravity on the particle and there is no net torque.

(b) X, The motion is described by the set of equations

FIG. 1. Particle trajectories in vertically aligned cellular flow: 2 U)W (8- Y m -+ W (8= (8- m)m 1
(a) Lagrangian fluid particlesb) spherical particles with terminal dt (x(1),0 1(g-m) 2g=(g-mm), (1)
fall speedwW,;=0.025. Note that “settling” is in the direction of,
increasing, the arrows indicate the direction of motion. Fu dm
initial particle positions are along,=0 or 0.5 only. Ezz(w-k DmXE-m)Xm. (2)

developed instead a contraction exponent to describe the atlerex is the instantaneous position of the center of mass of
traction or repulsion of a particular orbit from neighboring the axisymmetric particleg is the unit vector in the direction
orbits and applied this to consider the out-of-plane andf gravity, m is a unit vector aligned with the axis of sym-
stretching motion of the microstructure. Szeri and Lg#l]  metry that rotates with bodyyV, is the terminal fall speed
later developed a computational method to solve flow probparallel tom, W, is the terminal fall speed perpendicular to
lems of microstructured fluids considering the distributionm, anddx/dt is the particle velocity which responds to the
function of the conformation of the local structure, for which local fluid velocity u(x(t),t) in the surrounding flow. The
explicit knowledge is not required and which involves no orientation changes with the local flow vorticity, and E,
approximation. the rate of strain tensobD is a parameter that determines the
In extending the work of Mallier and Maxejl7], the  degree to which the particle turns to align with the principal
purpose of this study is to determine more precisely the naaxes of the local rate of strain. For a complete description of
ture of the chaotic motion mentioned in their work, whetherthe derivation, see Ref17].
it is observed for all initial particle positions and orientations It is possible to determine the specific values for the pa-
and what effect the various parameters have on the chaotrametersV;, W,, andD for spheroidal particles in terms of
motion utilizing techniques of dynamical systems. An impor-the aspect ratia. using standard relatiorji4]. These are
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[(272—1)In(\+ 1)+ \ 7] with mf+m3+m3=1.

2[(27%+ 1)In(A + 1) — N 7] We will first consider a restricted motion, where a particle
is oriented in a vertical plane amd;=0. In this case, there is

for a prolate spheroid)>1 and 72=X2—1, while for an  no tendency to turn out of the plane, and we can consider

WZ/Wl:

oblate spheroid\ <1 and?=1—\?2 only (x4,X5,6) motion of the particle, wheré@ specifies the
orientation in the plane. We will approach the problem by
[(27%+ L)tan L(7/N)—\7] considering in turiV, #W, but D=0, thenD#0. The rea-
WZ/Wl:2[(27-2—1)tan‘1(7-/)\)+)\7-]' son for this is that ifD=0, the system is conservative in

phase space and yet retains a coupling of the particle velocity
Thus for a spheroidally shaped partidesW,/W,;<3. The  and orientation which seems to be an essential ingredient for

values of the paramet& are a chaotic motion. We will show that settirng+#0 does not
qualitatively change the dynamical results significantly. We
D=(\2-1)/(A\?+1). will subsequently consider the extension to the full system.

. o If initially mg(t)=0, then this condition will persist, and
These relations are |nd|cat|_ve of _the range (_)f values to bene particle remains oriented in a verticad (x,) plane. We
expected for an axisymmetric particle though in the results tquil| first consider this restricted system
be presented the paramet®s /W, andD are varied inde-

pendently. dx,
We examine a particle motion in a two-dimensional cel- HZSin’JTX1COSJTX2+AWSin0CO§,
lular flow which is a steady-state solution of the inviscid
Euler equations for an incompressible flow, and is q
chosen because it is encountered in the onset of thermal con- Xa . .
vection in heated horizontal layers and is also a prototype dp - cosmxasinmxp W AWsir®6 ®)

model for more complex turbulent flows. For a two-

dimensional cellular flow given by the stream function

= wflsinﬁxlsinm_@, the corresponding velocity field in azwsinwxlsinﬂ'xz—2D7TCOS7TX10087TXZSin000519.
fixed coordinates is

u=(Uq,U,,0) = (SinmX4 COSTX5, — COSTX4SiNTX5,0), The orientation of the particle in thex{,x,) plane is here
specified by the anglé, m;=cosd, andm,=siné. The dif-

and thex, axis is aligned vertically, parallel @ Throughout ference in the two settling velocitie®;—W,, is repre-
the paper diagrams showing particles settling are drawn witkented byAW, which may be positive or negative, and the
the positivex, axis pointing upward on the page, in the usualvalue of W, is simply denoted asV.
manner of presenting plots in th&,(,x,) plane. The flow is
given in dimensionless form, scaled by the maximum verti-
cal velocity and such that the width of a flow cell is unity.
These velocity and length scales are used to give all results
in dimensionless form. The corresponding vorticity vector is  We begin by considering the manner in which the motion
w=(0,0w) where w=2 sinmx;sinmx,. The rate of strain of a spheroidal particle differs from that of a spherical one in
tensor has two nonzero componebts E;;= —E,,, where the cellular flow field, regarding the nonspherical shape as a
E = cosmx,c0smX,. The equations of motiofll) and(2) for ~ perturbation. In a vertical plane a spherical particle may be

Ill. PERSISTENCE OF
PERMANENT PARTICLE SUSPENSION

a nonspherical particle take the forms suspended by the flow, as illustrated by Fig. 1, and the par-
d ticle follows a closed path depending on its position and the
X _ _ value of the settling velocityWw. Of special interest is
dt = Uyt (W= Wp)mymg, (33 \hether or not this suspension and the existence of closed

orbits persists for the nonspherical particles. An answer to
dx, ) this question can be given using the recent work of Mezic
gr = Uzt Wot (Wi—Wo)m3, (3D and Wiggins[20], when the perturbatiod W+ 0 is intro-
duced but with the restriction still thad=0 in Egs. (5).
dxs With the particle rotating in response only to the local vor-
Ez(wl—wz)mzme,, (3c)  ticity and not the rate of strain the system of E@S) is
volume preserving in phase space, which is a requirement of
the theory[20]. A further requirement of the theory is that
ﬂ: —lwm-+DEm (m2+2m2) (43) the equations of motion be reformulated in terms of action-
dt 2R v 2 angle variables and various features of the unperturbed,
spherical particle, motion explored.
For a spherical particle, wheteW andD are both zero
system(5) reduces to

dam,

Wz%wml—DEmz(mgﬂLme) (4b)

dmg — dx; |
rTa DEmg(m5—my?), (40 rTa SiNTrX,COSTXs,
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dxX, )

rTa CoSTXSinmX,+ W, (6)
do ] ,
a = 7TS|n7TXlS|n7TX2 .

Within the unit cell{(x,X,)|0<X;,X,=<1} there are critical
points for the translational motion &0,(1/7)sin *W] and X
[0,1— (1/)sin W] provided O<W=1. These are hyper-
bolic saddle points corresponding to suspension of the par-
ticle in a vertical upflow. Another critical point lies at
[(1/7)cos *W,3] in the interior of the cell, this point being a
center. Particle suspension is only possibl®Vi 1; other-
wise all particles settle out along open trajectories, as also
shown in Fig. 1. The bounding trajectory separating the re-
gion of closed particle paths from the settling region is
formed by the heteroclinic orbit connecting the saddle points.
The extent of this suspension region diminishes\\asn- 3)
crease$1,2].

Another feature of the translational motion is that along
any particle path the quantity

2

1
H= ;sinwxlsimrxz - Wx; (7)

is constant. Indeed this modification of the streamfunction
forms a Hamiltonian for the motion which may be rewritten
as

dx; oH

dt — ax,’
dxz_ JoH g
dt — axq’ ®

(b) X,
The trajectories are then the level setdfWithin the sus- _ _ _ _
pension region of the unit cel is positive and is zero on _FIG_. 2. Level _sets oH corresponding spherical particle trajec-
the bounding trajectory. In Fig. 2, level setstéfare shown  tories in the region{(x;,x;)|0=xy,x,<2}; (&) W=0.1, and(b)
for W=0.1 and 0.4 to illustrate both the closed paths ofV=94-
suspended particles and the open paths of the settling spheri-

cal particles. These are given in the domdifx,,x,)|0 A. Action-angle variables

<X1,Xp=2} for comparison with later results. In order to apply the results of recent thedig0] the
For a sphere the particle orientatinis decoupled, and unperturbed problent6), where AW=0 and the particle is
has no influence on the particle position. At the saddle pointgpherical, must be written in terms of a set of one action, two

the local vorticity is zero and the particle does not rotate, SGingle variables. As a first step the system is written in the
that at these locations any initial value éfwill give an  canonical form

equilibrium point to systent6). More generally the particle

will rotate as it moves along a closed path in tha ;) dz; /dt=9H/dz,,
plane. An important feature is the ratio of the relative periods
for particle rotation and for the completion of a closed orbit
in the (X;,X,) plane. In the phase space formed Ry k-, 6)

the motion of a suspended sphere lies on a torus, the closed
paths illustrated in Fig. 2 are simply the projections of the _

torus onto the X;,X,) plane. The complexity of the motion dz5/dt=ks(21,2,),

on the torus is determined by the ratio of the two periods.

The issue of whether or not a nonspherical particle is susthrough the change of variables, (z,,z3) = (X1,X2,6). The
pended depends on the persistence of such tori. action variabld is given by

dz,/dt=—dH/dz,, 9
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1

27 u=n

440

I z,dz,, (10

135

where the integral is over the level ddt=h corresponding R ER
to a closed path in thez(,z,) coordinates, and, is speci-

fied in terms ofz; by Eq. (7). The action variable is propor-
tional to the area enclosed by the particle path and is define 1 -
in the unit cell for the region whernd is positive. The largest

positive value ofH occurs at the center critical point where

125

1
H= ;{(1— W?)Y2—Weos Wy, (11) ol Jos

at which pointl is zero, whilel takes its largest negative o0 005 oo 015 020 025
value forH=0. The Hamiltonian and syste(8) have a re-
flexional symmetry about the line defined by sg=1. As a 0.0 ' ' 30
result, actionl can be evaluated by integrating between the P
two values ofz; at which the level set intersects with g 1.e
=3. These pointszymin and z;may With 0<Z3 i <Zymax<1, ool '
are the two solutions of 2,

7H+ 7Wz =sinmz;. (12

-0.04

The action variablé(H), for a given value of the parameter
W, is thus

—1 [ Zimax
I(Hy=—| " [1/2—77‘1sin‘1(

Z1min

7(H +Wzl)) ] 006 |
——— | ldz.
sinmz,

(13) 0.00 0.05 0.10 ‘ 0.15

(b) H
The first angle variabler is defined by FIG. 3. Variation of the action variable (solid line) and first
a=2mtIT(H), (14) angular frequency ), (broken ling with values of H,
0<H=H given by Eq.(11), for W=0.1 and 0.4.
where T(H) is the period for a closed path in the;(z,)
plane. Again the reflexional symmetry permits us to writetime variable that changes byrZor each complete circuit.

down an explicit integral foff(H) as Numerical results for the dependence of the action varikble
and the angular frequendy; on H are given in Fig. 3 for
Zimad zg specific values ofV equal to 0.1 and 0.4. The valuesladire
T(H):ZLMM 2_1 negative for the counterclockwise orientation of the motion
in the unit cell; 1 has its most negative value along the
where the integral is over the segment of the pat 3. bounding trajectory wherH is zero and vanishes at the cen-
This integral leads to ter critical point whereH is a maximum. The angular fre-

guency increases monotonically too and satisfies the relation
dlI/dH=1/Q); implied by choice(10).
A second change of variable$, &,z3) to (I,¢4,¢,) is
(150  introduced based on the resqiheorem 3.1 of Mezic and

o o ] Wiggins[20]. This is defined byl,«)=(l,¢;), and the sec-
This integral is singular at the two endpoints, and must loonq angle variableb, is

cally be reformulated as an integral okl ivith respect ta,
to obtain numerical values. The change of variablasz,) Azg a hy(l,a")
to (1,a) [see, for example, Wigginf21]] yields the new =23+ ﬁa—f —a,
equations describing the system

T(H)=2 f "SI (mzy) — m(H+Wz)?) Yz,

Z1min

da'. (17

The integration in the angle variableis over a level set of

=0, H (or I) for a closed path andz; is defined as
a=27T(H)=Q4(1), (16) 27 hy(l,a)
| Azy= f o (18
Z3=h3(|,a)=k3(21(|,a’),22(|.a))- 0 1( )

This first change of variables converts the closed patihis is equivalent to a time integral b over one complete
trajectories of suspended spherical particles in thez) period T(H) of motion in the ¢,,z,) plane. The value of
plane to motion along a circle=const, andua is a rescaled Az; is the angled through which the sphere rotates during
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35 ey . . . . . B. Volume-preserving perturbation

With formulation (19) we are now able to address the
persistence of permanent suspension of slightly nonspherical
particles. The perturbations in particle shape are restricted to
D=0 andAW+#0, so that the motion is still volume preserv-
ing in phase space. The preceding discussion has shown that
the permanent suspension of a particle in the verticalx,)

3.0 F

25|

20

Q,Q,
15[ plane is equivalent to the persistence of tori in the phase
space as the perturbation is introduced.
tor The original set of equationés) may be expressed in
terms of a perturbation of systefi9). Following Eg.(9),
oo this is
o'-%.14 ‘ ‘-o.|12. -o.|10 -o.loé ’ ,-o.lot; -o.|04 - -o.|02‘ T oo le oH .
(a) | H = (9—22 + AWSII"IZ3CO§3 s
35 T T T
dz, oH .
30 ] W_ - &_Z:I-+AWSIr]223! (20)
2or dz : :
— =K3(21,2,) = 7 sinwz;Sinmz,,
20 |- dt
QI’QZ . . .
15[ and hence, in terms of the action-angle variables,
10 i=AWFo(|,¢1u¢2)a
05 $1=Q1(1)+AWFy (1,1, 65), (21
oot -o.‘oe -o.|o4 .o.‘oz 0.00 <.i)2: Qo(D)+AWF (1, dq, ).

(b) I
Mezic and Wigging 20] demonstrated how the first varia-
FIG. 4. Angular frequencieQ; and(), as functions of actioh; tion in AW of Eqg. (21) about the unperturbed syste(h9)
(@ W=0.1 and(b) W=0.4. may be used to generate a volume-preserving, three-
dimensional map by integrating the perturbed motion over a
one such complete period, and this is obviously independerdpecified time intervat. The perturbations in this context are
of the chosen starting point on such a closed circuit. In termsime independent, and the system is autonomous. The simple
of these new variables, the system of equati@ecomes nature of the unperturbed problefh9 means that his pro-
cedure may be done explicitly; see the Appendix. At this

=0, point recent resultf22] for KAM-type theories for volume-
. preserving maps in three dimensions may be applied. Under
h1=0Q4(1), (199 the conditions of the theorem of Cheng and $ag], as

given by Mezic and Wiggin§20] in theorem 5.1, there is a
¢ —0,(1)= &Q 0 nontrivial interval forAW aboutAW=0 for which the per-
2 2 27 V) turbed system admits a family of invariant tori. Further there
is a Cantor set, with increasing measure| &8V|— 0, such
Formulation(19) shows that in phase space the motion isthat if the value ofl is a member of the set there is a corre-
naturally foliated into a set of two-dimensional tori, deter- sponding invariant torus. An invariant torus of the map then
mined by the angle variables; and¢,. The structure of the  corresponds to a regular particle trajectory in physical space
motion on the tori then depends on whether or not the periwith the particle permanently suspended.

ods or the angular frequenci€k, and(}, are rationally re- The development and application of KAM-type theories
Iateq. If_ they are not the solution is quasiperiodic and theo odd dimensional systems is nontrivial and has a quite
motion is dense on the torus. different character to standard KAM theory. Feingold,

Figure 4 shows numerical values 6f,(1) and Q,(I)  Kadanoff, and Pird23], Cheng and Suf22], and Xia[24]
evaluated forw equal to 0.1 and 0.4. These are obtainedall contributed to this work on three-dimensional, volume-
from Egs.(15) and (18) with due attention to the endpoints preserving diffeomorphisms that may be characterized as
Z1min @Nd Z1ay. A local analysis at the center critical point having only one slowly varying action variable. While it is
shows that(); equals{), when| is zero, and this is not possible to consider whethé€}; and (), are rationally re-
dependent on the specific value\&fprovided O<W<1. In  lated or not, or give strongly irrational rotation numbers, this
the special context oV being zero, Eqs(6) and (7) show is not of itself sufficient in a three-dimensional system to
that ks equalsm?H and is a constant of the motion. In this determine the persistence of invariant tori. X24] extended
caseQ,(1) is w2H(l). the theory to higher dimensions.
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As summarized in the Appendix, the three-dimensional T , . — .
map derived from the perturbed equations of motion is 20+

I'=1+AWFy(l, 1, b5)+O(AW?),
bi=d1+ Qy(1)+AWF(1,d1,6,) +O(AWR), (22 o qp

by= bt Qp(1)+AWF,(1, b1, b2) + O(AW?);
the time intervalr=1 gives a period-1 map. At this point we °
depart from the earlier methofi20,22 and prefer to use the i
result of Xia[24], which is easier to apply in this context. 00 L . . s .
The requirements for the theorem on the existence of invari 08 1o 18 20 28
ant tori of map(22) are that~,, F,, andF, are real analytic
functions in their arguments. The map is volume preserving : : T '
as the original differential equations are, and this property i 2o 1
preserved by the perturbation expansion and integration. F
nally we also require tha€); and (), satisfy a nondegen-

eracy condition 151 ]
Qi) Q) 8
= ! " 5 = d> O 23 1o N
Qa0 @3 _
The above determinar®, based on the derivatives 61, 05:— ]

and (),, must be positive and bounded away from zero by
some positive numbed.

In previous treatment§20,27], the time intervals were s 10 15 2o as 20 35
rescaled to givé), =1, and a single condition ofd5(l) was (b) Q
imposed. While convenient for developing theorems, this is
not helpful for the practical verification of the conditions.  FIG. 5. First and second derivative$),/d(, (solid line) and

Simple manipulation, on the other hand, shows that d2Q,/d0Z (broken ling, as functions of);; (8 W=0.1, and(b)
W=0.4.

d/dI(Q5/0])=QIN 2. (24 IV. REGULAR AND CHAOTIC MOTION

The more general features of nonspherical particle mo-
tion, restricted to a vertical plane as given by ES), are
investigated using Poincasections and numerical calcula-
tions of the Lyapunov exponents. Poincaections in the
(X1,X5) plane of the system are constructed by taking the

d/dQ2,(d€2,/d;)=p>0 (29 valuesx, andx, given by the intersections with sir0. The

equations of motiort5) are periodic in the orientation angle

for some positive numbey. Referring back to the numerical 6, with a periods, corresponding to the symmetry of a sphe-
results of Figs. 3 and 4, we may clearly see 8, /dl is  roidal particle. The system is periodic too in the variablgs
indeed strictly positive. In Fig. 5 the numerical data haveandx, and values of these are mapped back, modulo 2, to the
been refined and accurately matched to an interpolating funéaterval[0,2]. A Runge-Kutta fourth-order numerical scheme
tion to give (), as a function of),. From this interpolating with a fixed time step size of IG has been used for the
function, first and second derivatives 9f, with respect to integration of the system, and Henon[25] method is
Q, have been evaluated. The numerical values show, as erdopted to obtain the sections. A typical Poincaeetion for
pected, a smooth continuous variation and this is not altered spherical particle, corresponding to the unperturbed system
by increased resolution. Conditid85) is clearly seen to be (6), is shown in Fig. 6 withiV=0.1. The sections, generated
satisfied in the two casé&/=0.1 and 0.4. It has also been by ten particles initially introduced in the unit cell
verified in other cases. {(X1,%2)|0=<xy,X,<1}, show clearly the regularity of the

The discussion of this section thus demonstrates that pemotion and the separate regions of permanent particle sus-
manent suspension of nonspherical particles is still to be expension and particle settling. These may be compared with
pected in the context dD =0, where there is coupling of the similar particle trajectories and level sets shown in Fig. 2.
particle orientation to the local vorticity but not to the local  Figure 7 shows a typical Poincasection produced by the
rate of strain. The numerical results of the following sectionperturbed system of the form described in Sec. Ill. Hate
show that suspension occurs too in the more general case0.1 andAW=0.2 whileD is zero. Three distinct types of
with D#0. motion are observable: regular motion of suspended par-

It is thus sufficient to showd/dI(dQ,/d(,) is strictly posi-
tive and bounded away from zero, or, provided thgt>0,
that
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X1

FIG. 6. Poincaresection at sif=0 whenD=0.0, W=0.1, and
AW=0.

ticles, regular motion of settling particles and chaotic motion
of settling particles. The regular motion, suspended or set-
tling, is analogous to that of the spherical particles shown in
the Poincaresections of Fig. 6. The particle-suspending re-
gion in the Poincaresection is composed of closed curves
defined by different initial conditions of a particle, and is
seen in the lower left side of the figure. An enlarged version
of this region is shown in Fig.(B). The chaotic region ob-
served in Fig. 7a) is produced by three different particle
trajectories. To verify that the region is indeed chaotic, we
compute the Lyapunov exponents along a solution starting at
a selected point in the region. The largest Lyapunov expo-
nent for the solution starting at the poiftt.1, 0.1, 0.0 con-
verges to the positive value of 0.53. The other two exponents
converge to zero and te 0.53.

The sum of the Lyapunov exponents should be zero, since
system(20) is volume preserving in phase space. That the
second exponent is zero should be expected¢ee Haken

(b)

0.2

0.1

Xq

FIG. 7. (8 Poincaresection at sifi=0 whenD=0.0, W=0.1,

[26]), as the governing differential equatiof®9) are autono- apd AW=0.2; and(b) the closeup of the particle-suspending re-
mous. For a general autonomous system of the form gion.

7=1(2) that remains tangent to the paftt). This solution gives one

of the principal directions and yields one of the Lyapunov

the equation governing the linear variatida used in the €xponents. For Eq20) the Euclidean norm of is bounded

computation of Lyapunov exponents is

exponent for this variation is zero.

d/dt(éZ,):éz]afllﬁZl ,

initial point z(0), and the exponents are calculated as

1
A= limIn[|5z(t)[|/] 52(0)|[].
t

— 00

and is in general nonzero. In the long-term limit, then, the

We have computed the largest Lyapunov exponents for
several solutions starting at different initial conditions in the
evaluated along the patr(t). The results depend on the chaotic region. Table | shows the results, which further con-
firm the chaotic nature of the motion. We may conclude that
the Lyapunov exponents are dependent on the initial starting
points even if we take into account numerical errors and the
inability to take an infinitely long time interval.

The structure of the regular particle motion in the settling

An orthogonalization procedure is used to select the princifegion shown in the Poincasection of Fig. 7 is given by the

pal directions foréz(0) needed to obtain the second andcomposition of crescent-shaped patterns, one in the upper
third exponents. For the autonomous syst@f), an initial part of the figure to the left and the other in the lower part
variation tangent to the solution path yields the solution ~ between abouk;=0.8 and 1.0. The particles continuously
settle, alternately generating section data points on one of the
lower crescents and a corresponding upper crescent, in the

oz(t) =1(z(t))[ || 6z(0)|/[[f(z(O)]1,
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TABLE I. The list of the largest Lyapunov exponents when
:OO, W1:O.3, andW2=0.1.

Initial points Largest Lyapunov exponents
(x,=0.1,x,=0.1,x3=0.0 0.53
(x,=0.3,x,=0.2,x3=0.0 0.52
(x,=0.7,%,=0.3,%x3=0.0 0.66
(X1=0.5, X2:0.5,X3:0.0) 0.66
(x;=0.7,%,=0.5,x3=0.0 0.62
(x;=0.6,x,=0.8,x3=0.0 0.64

direction ofx, increasing. Each upper crescent and the cor-
responding lower one is produced by a single-particle trajec-
tory starting at a given initial position. The feature of regular
settling motion was not observed in the earlier study of Mal-
lier and Maxey{17], and only become apparent in this more
careful investigation. A numerical calculation of the Xy
Lyapunov exponents for particles in these crescent regions o _ _
shows that the exponents all converge to zero in the Ion% FIG. 8. Poincaresection at sii=0 whenD =0.5, W=0.4, and
term, confirming the regular nature of the motion there. W=0.1

Comparison of system@0) and (6) shows that Eq(20) o, ] .
has discrete fixed points, whereas Ef) has an infinite Poincaresection constructed Wltﬁ=0.5 and the param_eters
number of them. This change implies the breakdown of aV=0.4 andAW=0.1. Both Figs. 7 and 8 show a region of
two-dimensional invariant surface that separates a particidegular particle motion where the particles are suspended
suspending region from a particle-settling region, such as igermanently. The extent of this region in Fig. 8 is smaller,
observed when we study E@), under perturbation viAw. ~ because of the larger value&. A region of regular particle
This would account for the emergence of chaotic motion forSettling is observed too, again these sections have a crescent-
system (20). Since system(20) is volume preserving, it Shaped pattern. The Lyapunov exponents for particle trajec-
would not have any kind of attractor. Thus a particle thatiories corresponding to these two regions are all zero. Figure
initially starts in a chaotic region would remain in the region 8 Shows further a third region of chaotic motion that is more
visiting every part of the region. The survival of a particle- €xtensive than in Fig. 7. Table Il lists the computed
suspending region is to be expected from the results in Seéyapunov exponents taken along sample solutions which
lll. Note that this region of permanent particle suspensiorStart at different points within the chaotic region. These posi-
does not extend to the cell boundaryxat= 0, unlike that of ~ tive exponent v_alues verify that the region is indeed chaotlc.
the spherical particles shown in Fig. 6 and illustrated in Fig_The table also illustrates that the exponents are solution de-
2. Near this cell boundary the vertical flow velocity counter-Pendent for syster(26).
acting particle settling is strongest. The effect of the pertur- Whether the sum of the Lyapunov exponents of the sys-
bation AW is to reduce the extent of the region for particle t€m at given parameter values is positive, zero, or negative
suspension. raises an interesting question, since syst@®) is neither

We restate the fully perturbed system, where not only the/0lume preserving or dissipative. A Lyapunov exponent of
effect of the gravitational settling is included but also theorderp, o{”(xo,V,), wherex, is the initial position and/,

coupling of the particle orientation to the local rate of strainiS the volume of g-dimensional parallelepiped with edges
Wy, Wo,... Wy, IS

%=sinwx1c08nx2+ AWSsing cos, 1|V (xou D)l
dt oP(Xg, V) = lim —inr—E 2
0:%p tﬂoot va(Xan)”
dx, . )
dat —cosmXysinmxg + W+ AWSin?o, (26) According to Oseledef27] and Bennettiret al.[28], o is
the sum of thep largest Lyapunov exponents
¥= 7 SiNTX,SiNTX,— 2D 7 COSTX1COSTX,Sing Co. TABLE Il. The list of the largest Lyapunov exponents when

D=0.5,W;=0.5, andW,=0.4.

We should note that syste(@6) is neither volume preserv-

ing nor dissipative since the divergence of the vector field iqlnmal points Largest Lyapunov exponents
— 2D cosmx;c0SmX,c0sd, which may be both positive or (x;=0.3,x,=0.15,x3=0.0) 0.40
negative. (x;=0.6,%,=0.3,x3=0.0) 0.44

Even with the additional rate-of-strain term, a typical (x,=0.7,x,=0.55,x;=0.0) 0.46
Poincaresection for systeni26) does not greatly differ from (X;=0.4,%X,=0.8, x3=0.0) 0.50

a typical Poincaresection for Eq.(20). Figure 8 shows a
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oP=g+o,+ - +o,

for almost all initialV,)’s. The relationship between the sum 175,
of the Lyapunov exponents and the expansion or contraction :
of the volume of the system is then 157
VoI ~IVp(0)e?, (27)
whereV (t) is the volume evolution through time. The case 2
where o(®) is positive should be eliminated on the grounds 0.754 .
that a volume cannot expand forever in a bounded space ; ,’
such as the space where systé&2) is defined. Thusr(®, 05 i i
the sum of the Lyapunov exponents, must be negative or :
zero for the systeni26) in a chaotic region for all ranges of 0.25-] %
the values of the parameters. Obviously for regular motion in .
non-chaotic regions{®=0. A net reduction in volume, cor- 0 — :
responding to the decrease of infinitesimal volumes governed 125 15 175 2
by relationship(27), will occur whena® is negative. Cal- X1
culations for several of the chaotic trajectories illustrated in ] R
Fig. 9 give sample values ot (3 equal to zero or FIG. 9. Poincaresection of the general motion at 8in0 for

—0.00215 and-0.00268. Within the precision of these cal- D=0, W=0.4, andAW=0.1; the section is projected onto the
culations it is clear that negative values of®) do arise. (¥1.X2) plane.
There is no consistent trend for all chaotic particle motion as )
the system is not ergodic, and the set of Lyapunov exponenth€ values of the components, ,m, are restricted to be 0
values varies with the initial conditions of the particle trajec-=M1-Mz=<@<1 and the particle moves with a fixed angle
tory. relative to the vertical plane. A new orientation anglenay

A tendency toward negative values of%) is consistent e defined fom;,m,, giving the particle orientation as pro-
with the physical characteristics of the particle motion. Wheri€cted onto a vertical plane:
D is nonzero, a particle will turn tending to align itself with

the local principal axes for the strain rate of the flow. This m; =a CoY,
will restrict the range of possible particle orientations in .
phase space. m,= asiné. (29

The other equationg4a and (4b), governing the particle

orientation, simply imply a rotation of in response to the
We now consider the general system of equati@snd  |ocal vorticity,

(4), where the motion is no longer restricted to a vertical

plane and a particle is free to move in three dimensions with do

arbitrary orientation. As done previously, the two contexts of a T sinmrx,; sinmrX, . (30

D=0 andD #0, are considered separately, corresponding to

whether or not the particle orientation is coupled to the local

rate of strain. As the Poincarsections of Sec. IV have

shown, a coupling of the particle orientation to the transla

tional motion is the essential ingredient for chaotic motion.

V. GENERAL MOTION

Beyond this, Eq(3), governing the particle position, may
be written in terms o in a manner analogous to E),

dxq

This occurs as a nonspherical partid®V#0 turns in re- —— = SinmX,CoSTXo + a2AW cosh sind,
sponse to the local vorticity. The additional coupling to the dt
rate of strain by nonzero values Bf does not dramatically
alter this behavior, at least for the restricted motion in a dx; : 5 %
vertical plane. T cosmx sinmx,+ W+ a?AW sirfd,  (31)
A. D=0 dx ~
, o —2 = a(1— a?)Y2AW sing.
In the absence of coupling to the local rate of strain in Eq. dt

(4), the system of equations may be simplified significantly.

For the two-dimensional cellular flow there is no component® comparison of Egs(31) for x; and x, with the corre-

of vorticity that would alter the value of the symmetry vector sponding Egs(5) shows that the two sets are identical if the
componentn; in Eq. (4¢). As a resultms is a constant, be it value of AW in Eqgs. (5) is replaced by the scaled value
nonzero or zero. As the vectar has unit size it follows that a?AW. The rotation ofé matches Eqs(5) too. The third
throughout the motion coordinatex; has no effect on the other variables, and

—_ _ changes passively in response to the changing orientation.
(m1+m;=1-mz=a“)=const. (28)  changes in the displacement are due solely to the compo-
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FIG. 10. Poincaresection of the general motion at €0 for

D=0.5,W=0.4, andAW=0.1, projected onto thex{,X,) plane:

(a) full view; (b) a close-up view in the regular settling region.
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jected onto the X;,x,) plane. The settling velocity param-
etersW and AW are 0.4 and 0.1, respectively. The initial
value ofms is 0.941, so that the value of is 0.339 and the
effective value of the perturbatiory?AW equals 0.0115.
The resulting Poincarsection is very similar to that of Fig.
7, with clearly discernible regions of regular particle suspen-
sion, regular settling and chaotic settling. The relatively low
value of the effective perturbation gives a larger region of
regular particle suspension extending further toward the cell
boundary aix,=0. The crescent patterns associated with the
regular settling lie in a fairly well-defined “channel” and the
chaotic motion occurring in the intervening region.

B.D+#0

In the most general cuontext where the coupling to the
rate of strain in three dimensions is included dhds non-
zero then no major simplification of Eq&) and(4) is pos-
sible. The previously obtained results still provide useful in-
dications as to the typical particle motion. The third
coordinatex;, for displacement out of the vertical plane, still
has no influence on the other variables, and simply responds
passively to the changing particle orientation. The projection
of the motion onto the verticalxg,x,) plane is the most
significant. The orientation of the symmetry axisis still
strongly governed by the local vorticity, but the coupling to
the rate of strain causes the; component to vary continu-
ously. The unit vectom can be expressed in terms of two
angle variables 6 and ¢ with m equal to
(sing cod,sing sind,cosp). The rotation4) of m is given by
the two evolutionary equations f@grand ¢ as

de
Tk sinmx;sinmX,— DE(X1,X5)sin20,
(32
dé —1DE i X
FTE (X1,X2)sSiN2¢ cosA.

When¢= /2, ms is zero, and the equation feris the same
as Eq.(26¢). If D is zero theng is constant, and the result
matches Eq(30).

Poincare sections are obtained for the system
(X1,X5,60,¢), taken at si@=0, and projected onto the

nent of the settling velocity of a nonspherical particle di-(x,,x,) plane, with no distinction made as to the valuefof
rected out of the vertical plane. f

If the general motion, foD=0, is projected onto the the values oW and AW are 0.4 and 0.1, respectively. The

(X1,X2) plane the system of equatioi80) and (31) is en-

A Poincaresection is shown in Fig. 10 fdp = 0.5, and again

same general features are observed as before. In the pro-

tirely equivalent to the previously described motion confinediected Poincaresection of Fig. 10s), there is a region of

to a vertical plane, but with a reduced value H¥V. The

regular motion, approximately centered o=0.5 and

persistence of regular motion with particle suspension and of . 25< x,<0.5, where the data points correspond to particles
regions of regular settling motion are to be expected then iermanently suspended by the flow within the original cell
this more general context. This demonstrates too the morgto which they were introduced. There is also a portion of
general significance of the previous results. Different initialthe section showing a chaotic settling motion, and, somewhat
values ofm; will lead to different results, but asQa<1
and AW controls the degree to which the nonsphericalHowever, an enlargement of a portion of the Poincsee-
shape affects the motion, the regions of regular motion fotion, shown in Fig. 1(b), shows clearly the characteristic
suspension or settling will always be at least as large as thosgescent-shaped pattern of data points similar to those seen
given previously for the same value AW.
These observations are supported by numerical resultgontinuously in a quasiperiodic motion, generating data
Figure 9 shows a Poincasection of this general motion for points in the section alternately on the crescent pattern in the

D=0, where the section, taken at 80, has been pro-

harder to distinguish, a region of regular settling motion.

previously in Figs. 7 and 10. As before, the particles settle

lower and upper cells.
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Numerical results for some of the Lyapunov exponentsnechanism for the dispersion of small, nonspherical particles
have been calculated for the same condition®ef0.5,W  settling under gravity. Previously Brenng30,31 and Dill
=0.4, and AW=0.1. A particle introduced atx and Brennef32] demonstrated that small particles subject to
=(0.8,0.5,0.0) with orientationm=(0.339,0,0.941) lies Brownian motion will be dispersed in the horizontal direc-
within the region of regular settling motion, and the largesttion. This is due to the dependence of settling velocity on
Lyapunov exponent indeed converges to zero. A particle inerientation, and the horizontal motion of particles not aligned
troduced with the same initial conditions, but witky  with the vertical. Under the influence of Brownian motion
=0.65, settles chaotically. The largest Lyapunov exponenthese particles have a random orientation that gives rise to a
for this particle is 0.39. Taylor dispersion coefficient significantly greater than that

due to translational Brownian motion. Brownian motion is
only appreciable for very small particles,Bn in diameter
VI. CONCLUSION in air for example, and even smaller in liquid flows. Chaotic

The results in this paper illustrate the structural features of?iXing in a nonuniform shear flow by contrast should be
the motion of nonspherical particles settling in a steady, nonéfféctive over a wide range of scales and especially for larger
uniform flow. The possibilities of regular motion with par- Particles. This chaotic dispersion of nonspherical particles
ticles suspended by the flow or settling out, together with®Ven in & steao_ly laminar flow _W|II _have S|_m|Iar|t|es f[o the
chaotic settling are all demonstrated. The persistence dihaotic dispersion of heavy, inertial particles studied by
regular settling had not been previously observed in earlief-fisantiet al.[5] and Wanget al. [33].
work [17]. The independent variation of the paramet&kd
andD confirms that the key ingredient for the chaotic tum- ACKNOWLEDGMENTS
bling motion is the coupling of particle orientation to the )
settling velocity, and the rotation of the particle in response 1ne authors would like to thank Professor Tasso Kaper
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apply in other nonuniform shear flows, and similar features

should be observable in shear layers or jet flows. The basic APPENDIX: CONSTRUCTION OF THE MAP

requirement is that there be a circulatory motion in a vertical ) ) ) )

plane with a nonuniform distribution of horizontal vorticity. ~ 1he Perturbed system of differential equatiof20)) in
The theoretical arguments presented to demonstrate tH8MS Of €1,22,23) is

persistence of particle suspension are an application of the

theory of Mezic and Wiggin§20] for systems of one-action dzy/dt=1f1(z1,25) + AWgi(2Z3),

and two-angle variables. In the process of verifying the con-

ditions for the theory an alternative formulation is applied for dz/dt="f,(z1,2,) + AWQ,(23), (A1)
the nondegeneracy condition. This is easier to use, and may

be more readily applied to computational results. Extensions dzy/dt=f4(zy,2,),

of Hamiltonian theory to systems that are volume preserving
in phase space have a number of applications to mixing i@vhere the functions are defined as
fluid flow systems and the dynamics of particle transport.
Recent work in this area includes the paper by Cartwright,
Feingold, and Pir¢29].

In the earlier study by Mallier and Maxdy7] specific

f,=sinmz,cosmrz,,

aspect ratios of spheroidal particles were used to set values fo=—cosmrz;sinmz, + W,
of D, W, andAW and to determine the overall features of
the motion. For example a prolate spheroid with aspect ratio f3= 7 sinmz,sinmz,, (A2)

A =2 the value oD is 0.6, and the relative value &fW is
approximately 0.1%9/. For W=0.24, about 40% of particles
initially distributed uniformly in a unit cell will be perma-
nently suspended, as compared to between 58% and 55% for )
spherical particles with settling velocities equalWbor W gp=Ssir’z.
+ AW, respectively. Similarly ifW/=0.48 or 0.72 about 22%
or 8.5% of the particles are retained compared to a range oWithin the region of spherical particle suspensibi% 0, the
35-30% and 17-11% for spherical particles. The nonspherghange of variables fromz(,z,,z3) to (I, ¢1,¢,) given by
cal shape reduces the particle retention below the level thatgs.(10)—(18) is well defined and a particular pair of values
would be expected for a spherical particle even at the higheof z;,z, will lie on some level set oH. The angle variables
terminal velocity W+AW. Departures from a spherical ¢;¢, determine the position on the level set and the particle
shape were found also to increase the average particle setrientation. The variables,;,z,,z; may then be expressed as
tling velocity. functions ofl, ¢4, and ¢,. An application of the chain rule
Finally, the chaotic tumbling is potentially an important gives the corresponding differential equations

0, = Sinzzco¥s,
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| ooz,  dllazy 0 fi+AWg, (1%,89, po0—[ 124+ AWI(7), 3+ Q1 (1%) 7+ AWH(7),
b |=| 911z, depiloz 0 f,r AW
1 $ifZy 092, 2 % 0+ Q,(19 7+ AWSL()]. (A7)
¢2 &(j)z/&zl 0(}52/(922 (?¢2/0-'23 f3
(A3) Expressions fot(7),#1(7), and ¢3(7) can be obtained
These may be written in the more compact fai21), by solving Eqs(A6), which for 7=1 yields
| 1
|=AWFo(l, b1, b2), |1<1)=f0 Fal1%,69+ 0110,
$1=Q1(1)FAWFy(1, b1, ), (Ad)

= 0
. X $3+ Q,(19t]dt=Fo(12,62%2),
$2=Qo(1)+AWF,(1, 1, 5).
1
The construction of the iterated map follows Mezic and dﬁ(l):f Fa[12, 8%+ Q4 (19t, 3O+ Q,(19)t]dt
0

Wiggins [20] and begins with a regular perturbation expan-
sion for the motior , ¢4, ¢, for small values oA W valid for

Q) 1t
times ofO(1). Thus with the initial valuesp? and ¢ of the +71(|°)f f Fol1°,¢0+Q4(19¢,
angle variables, 0.Jo
1AW(t) =194+ AWIL(t) + O[ (AW)?] X g3+ Qp(10)£1d7dt=F4(1%,43,¢2), (A8)

1) =2+ Q1 (19t+ AWI(t) + O[(AW)?] (AS) Sh(1)= f TELL10, 40+ 0 (10)t, 40+ Q,(10) ]t
0
$2"(1) = g3+ Qp(1°)t+ AW (1) + OL(A]W)?]. P
The functionsl (t), ¢1(t), and ¢3(t) satisfy the variational +72|0f0 foFo[|o,¢2+91(|0)§,
equations

X ¢3+0,(19) £]dZdt=F 5(1°,¢2, $9).

These results yield the final form of the volume-preserving
map

11=Fol1%, 63+ 04(19t, 69+ Q,(190t],

¢i=%<'°'l+F1[|°,¢2+ﬂl<l°>t,¢2+ﬂzl<l°>t], (A6)
| —1+AWFo(l, b1, )+ O(AW?),

a0, 3
$3= 5 (IO Fol1®, 62+ Qa(19,62+ 05(1°1]. G1 1t Qa1+ AWFL(1, 61, 65)+ O(AWD), (A9)

We seek to construct a map that advances the variables ¢>2—>¢2+QZ(I)+WA|52(I,¢1,¢2)+O(AW2).
1AW 62V, 6, AW over a time interval-=1 from the initial
values|°,¢>(1’,¢g. The perturbation expansion gives the ap-Other, shorter time intervalsmay be used to construct simi-

proximate map lar maps as required.
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