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Chaotic motion of nonspherical particles settling in a cellular flow field
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R & D Center, Samsung Electronics Company, Suwon City, Kyungki-Do, Korea 441-742
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Small, spheroidal particles undergo a tumbling motion as they settle out under gravity through a fluid flow.
This motion is in response to the fluid forces that act on the particle causing it to rotate due to the local fluid
vorticity and rate of strain. In this paper the nonlinear system of differential equations governing the particle
motion in a spatially periodic, cellular flow field is considered. The motion of spherical particles is completely
regular, and in some regions of the flow they may be permanently suspended. Using recent results on volume-
preserving maps, it is shown that this behavior can persist for nonspherical particles. More usually the tumbling
motion is chaotic. This is characterized by results on Poincare´ sections of the motion and determination of
Lyapunov exponents. The response to flow vorticity and rate of strain is analyzed for both full three-
dimensional motion and restricted planar motion to determine the main factors governing the chaotic motion.
@S1063-651X~97!01111-2#

PACS number~s!: 47.52.1j, 47.55.kf, 05.45.1b
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I. INTRODUCTION

A recurring question in the study of particle settling
whether or not particles can be held in suspension by a fl
The gravitational settling of small, spherical particles in
steady convection flow was studied by Stommel@1#. He
showed that if the convective updraft was greater than
terminal fall speed of the particle then in a region of the flo
particles will be permanently held in suspension, as ill
trated in Fig. 1. Later work by Maxey and Corrsin@2# and
Maxey @3# revealed that if the inertial effects of the particl
are included the permanent suspension is no longer m
tained and all the particles eventually settle out. Unlike
above studies, Smith and Spiegel@4# observed a chaotic mo
tion by introducing spherical particles into an unsteady c
lular flow field. Crisantiet al. @5# quantitatively studied the
motion of spherical particles in a steady two-dimensio
cellular flow where the particles exhibited strong inertia
their response to local fluid velocity. Here too they fou
that the particle motion was chaotic for particles sligh
heavier than the fluid. This kind of chaotic motion, of eith
discrete particles or of fluid elements, known as Lagrang
turbulence@6# has also been analyzed in the steady inco
pressible three dimensionalABC flow of Arnold @7# by
Dombreet al. @8#. They observed that the Lagrangian moti
of fluid elements in ABC flow is chaotic in the neighborhoo
of the heteroclinic lines connecting the unstable fixed poin
More recent studies@9,10# on the motion of solid particles in
theABC flow have shown that both small- and large-partic
inertia, as compared to a characteristic flow time scale, el
nated chaos but for intermediate particle inertia the Lagra
ian motion was chaotic.

Frequently the particles encountered in engineering
natural contexts such as the formation and growth of crys
in a liquid melt, ice crystal growth in atmospheric clou
@11#, or the formation of crystals in a cooling body of magm
@12# are nonspherical. Yet despite their prevalence ther
561063-651X/97/56~5!/5431~14!/$10.00
.
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much less information available on the characteristics
their motion. Spheroidal particles and ellipsoids of revo
tion are the simplest examples of nonspherical particles
consider, and their orientation can be characterized b
simple unit vectorm along the axis of symmetry. An earl
study of the motion of nonspherical particles in a fluid w
the paper by Jeffrey@13#. He considered an ellipsoidal pa
ticle which was neutrally buoyant and was placed in a u
form shear flow. The forces and moments acting on the sm
particle were determined from the low Reynolds numb
Stokes flow produced locally by the particle moving relati
to the flow. In this example the center of the particle mov
with the local fluid velocity but the particle turned continu
ously in response to the vorticity and the rate of strain of
uniform shear flow. Extensions to these results are given
Bretherton@14# and Happel and Brenner@15# for particles
within the Stokes regime. Extending the results of Jeffr
@13# for single particles, Davis@16# has considered the ave
age sedimentation velocity in a dilute suspension of axisy
metric particles suspended in a simple shear flow at lo
particle Reynolds numbers. He noted the dependence o
sedimentation of the particles on their shapes and orie
tions and the rotation of the particles by the imposed fl
field.

The motion of rigid spheroidal particles settling und
gravity in a cellular flow field was first investigated by Ma
lier and Maxey @17#. Along with both settling motion of
some particles and a permanent suspension of others,
detected the onset of chaotic motion at large particle as
ratios. In a separate context a suspension of neutrally bu
ant, nonsettling, spheroidal particles has been used as a
ample of a fluid with complex microstructure. Szeri, Wi
gins, and Leal@18# studied this for the dynamical behavior o
an orientable microstructure in a general two-dimensio
fluid flow. They emphasized the fact that the usual tools
analysis of an autonomous system should not be casu
applied to the analysis of a nonautonomous system. T
5431 © 1997 The American Physical Society
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5432 56H. SHIN AND M. R. MAXEY
developed instead a contraction exponent to describe th
traction or repulsion of a particular orbit from neighborin
orbits and applied this to consider the out-of-plane a
stretching motion of the microstructure. Szeri and Leal@19#
later developed a computational method to solve flow pr
lems of microstructured fluids considering the distributi
function of the conformation of the local structure, for whic
explicit knowledge is not required and which involves
approximation.

In extending the work of Mallier and Maxey@17#, the
purpose of this study is to determine more precisely the
ture of the chaotic motion mentioned in their work, wheth
it is observed for all initial particle positions and orientatio
and what effect the various parameters have on the cha
motion utilizing techniques of dynamical systems. An impo

FIG. 1. Particle trajectories in vertically aligned cellular flow
~a! Lagrangian fluid particles;~b! spherical particles with termina
fall speedW150.025. Note that ‘‘settling’’ is in the direction ofx2

increasing, the arrows indicate the direction of motion. For~b!,
initial particle positions are alongx250 or 0.5 only.
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tant factor is the coupling between the orientation and
instantaneous settling velocity. While the various physi
parameters have specific relations to the particle aspect
of a spheroid@17# it is useful to investigate more gener
values to determine the essential features of the dynam
For example this will allow us to consider separately t
particle response to flow vorticity and to rate of strain. T
equations of particle motion and the flow field are given
Sec. II, introducing both the full three-dimensional proble
and the motion restricted to a vertical plane. In Sec. III t
latter restricted problem, which involves the particle positi
in the vertical plane and an orientation angle, is expresse
a three-variable system that matches recent theory devel
by Mezic and Wiggins@20# for extended one action—two
angle-variable, volume-preserving differential equatio
This allows us to use recent results on volume-preserv
maps in determining the persistence of particle suspen
and regular motion for spheroidal particles. The restric
problem is further considered in Sec. IV, where the Poinc´
sections and values of the Lyapunov exponents show
separate regions of regular and chaotic motion in the flo
Finally, in Sec. V, results for the full, unrestricted motion a
discussed.

II. EQUATIONS OF MOTIONS

In this paper we consider the motion of a small axisy
metric particle turning in response to the local velocity g
dient and the changes in gravitational settling velocity t
occur as the particle turns. As in the paper by Jeffery@13#,
the particle is assumed to be sufficiently small that the lo
disturbance flow due to the presence of the particle is a
Reynolds number Stokes flow. The fluid force and torque
the particle are then linearly related to the relative velocity
the particle to the surrounding fluid, the angular velocity, a
the local velocity gradient of the imposed flow field. Wit
negligible particle inertia the fluid force balances the resu
ant force of gravity on the particle and there is no net torq
The motion is described by the set of equations

dx

dt
5u„x~ t !,t…1W1~ ĝ•m!m1W2„ĝ2~ ĝ•m!m…, ~1!

dm

dt
5

1

2
~v1Dm3E•m!3m. ~2!

Herex is the instantaneous position of the center of mass
the axisymmetric particle,ĝ is the unit vector in the direction
of gravity, m is a unit vector aligned with the axis of sym
metry that rotates with body,W1 is the terminal fall speed
parallel tom, W2 is the terminal fall speed perpendicular
m, anddx/dt is the particle velocity which responds to th
local fluid velocity u„x(t),t… in the surrounding flow. The
orientation changes with the local flow vorticityv, and E,
the rate of strain tensor.D is a parameter that determines th
degree to which the particle turns to align with the princip
axes of the local rate of strain. For a complete description
the derivation, see Ref.@17#.

It is possible to determine the specific values for the
rametersW1 , W2 , andD for spheroidal particles in terms o
the aspect ratiol using standard relations@14#. These are
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56 5433CHAOTIC MOTION OF NONSPHERICAL PARTICLES . . .
W2 /W15
@~2t221!ln~l1t!1lt#

2@~2t211!ln~l1t!2lt#

for a prolate spheroid,l.1 and t25l221, while for an
oblate spheroid,l,1 andt2512l2

W2 /W15
@~2t211!tan21~t/l!2lt#

2@~2t221!tan21~t/l!1lt#
.

Thus for a spheroidally shaped particle1
2 <W2 /W1< 3

2 . The
values of the parameterD are

D5~l221!/~l211!.

These relations are indicative of the range of values to
expected for an axisymmetric particle though in the result
be presented the parametersW2 /W1 andD are varied inde-
pendently.

We examine a particle motion in a two-dimensional c
lular flow which is a steady-state solution of the invisc
Euler equations for an incompressible flow, and
chosen because it is encountered in the onset of thermal
vection in heated horizontal layers and is also a protot
model for more complex turbulent flows. For a tw
dimensional cellular flow given by the stream functio
c5p21sinpx1sinpx2, the corresponding velocity field in
fixed coordinates is

u5~u1 ,u2,0!5~sinpx1cospx2 ,2cospx1sinpx2,0!,

and thex2 axis is aligned vertically, parallel toĝ. Throughout
the paper diagrams showing particles settling are drawn w
the positivex2 axis pointing upward on the page, in the usu
manner of presenting plots in the (x1 ,x2) plane. The flow is
given in dimensionless form, scaled by the maximum ve
cal velocity and such that the width of a flow cell is unit
These velocity and length scales are used to give all res
in dimensionless form. The corresponding vorticity vector
v5(0,0,v) where v52p sinpx1sinpx2. The rate of strain
tensor has two nonzero componentsE5E1152E22, where
E5p cospx1cospx2. The equations of motion~1! and~2! for
a nonspherical particle take the forms

dx1

dt
5u11~W12W2!m1m2 , ~3a!

dx2

dt
5u21W21~W12W2!m2

2, ~3b!

dx3

dt
5~W12W2!m2m3 , ~3c!

dm1

dt
52 1

2 vm21DEm1~m3
212m2

2!, ~4a!

dm2

dt
5 1

2 vm12DEm2~m3
212m1

2! ~4b!

dm3

dt
5DEm3~m2

22m1
2!, ~4c!
e
o
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n-
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with m1
21m2

21m3
251.

We will first consider a restricted motion, where a partic
is oriented in a vertical plane andm350. In this case, there is
no tendency to turn out of the plane, and we can cons
only (x1 ,x2 ,u) motion of the particle, whereu specifies the
orientation in the plane. We will approach the problem
considering in turnW1ÞW2 but D50, thenDÞ0. The rea-
son for this is that ifD50, the system is conservative i
phase space and yet retains a coupling of the particle velo
and orientation which seems to be an essential ingredien
a chaotic motion. We will show that settingDÞ0 does not
qualitatively change the dynamical results significantly. W
will subsequently consider the extension to the full syste

If initially m3(t)50, then this condition will persist, and
the particle remains oriented in a vertical (x1 ,x2) plane. We
will first consider this restricted system

dx1

dt
5sinpx1cospx21DWsinucosu,

dx2

dt
52cospx1sinpx21W1DWsin2u ~5!

du

dt
5psinpx1sinpx222Dpcospx1cospx2sinucosu.

The orientation of the particle in the (x1 ,x2) plane is here
specified by the angleu, m15cosu, andm25sinu. The dif-
ference in the two settling velocities,W12W2 , is repre-
sented byDW, which may be positive or negative, and th
value ofW2 is simply denoted asW.

III. PERSISTENCE OF
PERMANENT PARTICLE SUSPENSION

We begin by considering the manner in which the moti
of a spheroidal particle differs from that of a spherical one
the cellular flow field, regarding the nonspherical shape a
perturbation. In a vertical plane a spherical particle may
suspended by the flow, as illustrated by Fig. 1, and the p
ticle follows a closed path depending on its position and
value of the settling velocityW. Of special interest is
whether or not this suspension and the existence of clo
orbits persists for the nonspherical particles. An answe
this question can be given using the recent work of Me
and Wiggins@20#, when the perturbationDWÞ0 is intro-
duced but with the restriction still thatD50 in Eqs. ~5!.
With the particle rotating in response only to the local vo
ticity and not the rate of strain the system of Eqs.~5! is
volume preserving in phase space, which is a requiremen
the theory@20#. A further requirement of the theory is tha
the equations of motion be reformulated in terms of actio
angle variables and various features of the unperturb
spherical particle, motion explored.

For a spherical particle, whereDW and D are both zero
system~5! reduces to

dx1

dt
5sinpx1cospx2 ,
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dx2

dt
52cospx1sinpx21W, ~6!

du

dt
5psinpx1sinpx2 .

Within the unit cell$(x1 ,x2)u0<x1 ,x2<1% there are critical
points for the translational motion at@0,(1/p)sin21W# and
@0,12(1/p)sin21W# provided 0<W<1. These are hyper
bolic saddle points corresponding to suspension of the
ticle in a vertical upflow. Another critical point lies a

@(1/p)cos21W,1
2# in the interior of the cell, this point being

center. Particle suspension is only possible ifW<1; other-
wise all particles settle out along open trajectories, as a
shown in Fig. 1. The bounding trajectory separating the
gion of closed particle paths from the settling region
formed by the heteroclinic orbit connecting the saddle poin
The extent of this suspension region diminishes asW in-
creases@1,2#.

Another feature of the translational motion is that alo
any particle path the quantity

H5
1

p
sinpx1sinpx22Wx1 ~7!

is constant. Indeed this modification of the streamfunctioc
forms a Hamiltonian for the motion which may be rewritte
as

dx1

dt
5

]H

]x2
,

dx2

dt
52

]H

]x1
, ~8!

The trajectories are then the level sets ofH. Within the sus-
pension region of the unit cellH is positive and is zero on
the bounding trajectory. In Fig. 2, level sets ofH are shown
for W50.1 and 0.4 to illustrate both the closed paths
suspended particles and the open paths of the settling sp
cal particles. These are given in the domain$(x1 ,x2)u0
<x1 ,x2<2% for comparison with later results.

For a sphere the particle orientationu is decoupled, and
has no influence on the particle position. At the saddle po
the local vorticity is zero and the particle does not rotate,
that at these locations any initial value ofu will give an
equilibrium point to system~6!. More generally the particle
will rotate as it moves along a closed path in the (x1 ,x2)
plane. An important feature is the ratio of the relative perio
for particle rotation and for the completion of a closed or
in the (x1 ,x2) plane. In the phase space formed by (x1 ,x2 ,u)
the motion of a suspended sphere lies on a torus, the cl
paths illustrated in Fig. 2 are simply the projections of t
torus onto the (x1 ,x2) plane. The complexity of the motion
on the torus is determined by the ratio of the two perio
The issue of whether or not a nonspherical particle is s
pended depends on the persistence of such tori.
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A. Action-angle variables

In order to apply the results of recent theory@20# the
unperturbed problem~6!, whereDW50 and the particle is
spherical, must be written in terms of a set of one action, t
angle variables. As a first step the system is written in
canonical form

dz1 /dt5]H/]z2 ,

dz2 /dt52]H/]z1 , ~9!

dz3 /dt5k3~z1 ,z2!,

through the change of variables (z1 ,z2 ,z3)5(x1 ,x2 ,u). The
action variableI is given by

FIG. 2. Level sets ofH corresponding spherical particle traje
tories in the region$(x1 ,x2)u0<x1 ,x2<2%; ~a! W50.1, and~b!
W50.4.
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I 5
1

2pEH5h
z2dz1 , ~10!

where the integral is over the level setH5h corresponding
to a closed path in the (z1 ,z2) coordinates, andz2 is speci-
fied in terms ofz1 by Eq. ~7!. The action variable is propor
tional to the area enclosed by the particle path and is defi
in the unit cell for the region whereH is positive. The larges
positive value ofH occurs at the center critical point wher

H5
1

p
$~12W2!1/22Wcos21W%, ~11!

at which point I is zero, whileI takes its largest negativ
value forH50. The Hamiltonian and system~9! have a re-
flexional symmetry about the line defined by sinpz251. As a
result, actionI can be evaluated by integrating between
two values ofz1 at which the level set intersects withz2
5 1

2 . These points,z1min and z1max with 0,z1min<z1max,1,
are the two solutions of

pH1pWz15sinpz1 . ~12!

The action variableI (H), for a given value of the paramete
W, is thus

I ~H !5
21

p E
z1min

z1maxH 1/22p21sin21S p~H1Wz1!

sinpz1
D J dz1 .

~13!

The first angle variablea is defined by

a52pt/T~H !, ~14!

whereT(H) is the period for a closed path in the (z1 ,z2)
plane. Again the reflexional symmetry permits us to wr
down an explicit integral forT(H) as

T~H !52E
z1min

z1maxdz1

ż1
,

where the integral is over the segment of the pathz2< 1
2 .

This integral leads to

T~H !52E
z1min

z1max
$sin2~pz1!2p2~H1Wz1!2%21/2dz1 .

~15!

This integral is singular at the two endpoints, and must
cally be reformulated as an integral of 1/ż2 with respect toz2
to obtain numerical values. The change of variables (z1 ,z2)
to (I ,a) @see, for example, Wiggins@21## yields the new
equations describing the system

İ 50,

ȧ52p/T~H !5V1~ I !, ~16!

ż35h3~ I ,a!5k3„z1~ I ,a!,z2~ I ,a!….

This first change of variables converts the closed p
trajectories of suspended spherical particles in the (z1 ,z2)
plane to motion along a circleI 5const, anda is a rescaled
ed

e

-

h

time variable that changes by 2p for each complete circuit.
Numerical results for the dependence of the action variabI
and the angular frequencyV1 on H are given in Fig. 3 for
specific values ofW equal to 0.1 and 0.4. The values ofI are
negative for the counterclockwise orientation of the moti
in the unit cell; I has its most negative value along th
bounding trajectory whereH is zero and vanishes at the ce
ter critical point whereH is a maximum. The angular fre
quency increases monotonically too and satisfies the rela
dI/dH51/V1 implied by choice~10!.

A second change of variables (I ,a,z3) to (I ,f1 ,f2) is
introduced based on the result~theorem 3.1! of Mezic and
Wiggins@20#. This is defined by (I ,a)5(I ,f1), and the sec-
ond angle variablef2 is

f25z31
Dz3

2p
a2E

0

a h3~ I ,a8!

V1
da8. ~17!

The integration in the angle variablea is over a level set of
H ~or I ! for a closed path andDz3 is defined as

Dz35E
0

2p h3~ I ,a!

V1~ I !
da. ~18!

This is equivalent to a time integral ofh3 over one complete
period T(H) of motion in the (z1 ,z2) plane. The value of
Dz3 is the angleu through which the sphere rotates durin

FIG. 3. Variation of the action variableI ~solid line! and first
angular frequency V1 ~broken line! with values of H,
0<H<Hmax given by Eq.~11!, for W50.1 and 0.4.
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5436 56H. SHIN AND M. R. MAXEY
one such complete period, and this is obviously independ
of the chosen starting point on such a closed circuit. In ter
of these new variables, the system of equations~6! becomes

İ 50,

ḟ15V1~ I !, ~19!

ḟ25V2~ I !5
Dz3

2p
V1~ I !.

Formulation ~19! shows that in phase space the motion
naturally foliated into a set of two-dimensional tori, dete
mined by the angle variablesf1 andf2 . The structure of the
motion on the tori then depends on whether or not the p
ods or the angular frequenciesV1 andV2 are rationally re-
lated. If they are not the solution is quasiperiodic and
motion is dense on the torus.

Figure 4 shows numerical values ofV1(I ) and V2(I )
evaluated forW equal to 0.1 and 0.4. These are obtain
from Eqs.~15! and ~18! with due attention to the endpoint
z1min and z1max. A local analysis at the center critical poin
shows thatV1 equalsV2 when I is zero, and this is not
dependent on the specific value ofW provided 0<W,1. In
the special context ofW being zero, Eqs.~6! and ~7! show
that k3 equalsp2H and is a constant of the motion. In thi
caseV2(I ) is p2H(I ).

FIG. 4. Angular frequenciesV1 andV2 as functions of actionI ;
~a! W50.1 and~b! W50.4.
nt
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B. Volume-preserving perturbation

With formulation ~19! we are now able to address th
persistence of permanent suspension of slightly nonsphe
particles. The perturbations in particle shape are restricte
D50 andDWÞ0, so that the motion is still volume preserv
ing in phase space. The preceding discussion has shown
the permanent suspension of a particle in the vertical (x1 ,x2)
plane is equivalent to the persistence of tori in the ph
space as the perturbation is introduced.

The original set of equations~5! may be expressed in
terms of a perturbation of system~19!. Following Eq. ~9!,
this is

dz1

dt
5

]H

]z2
1DWsinz3cosz3 ,

dz2

dt
52

]H

]z1
1DWsin2z3 , ~20!

dz3

dt
5k3~z1 ,z2!5p sinpz1sinpz2 ,

and hence, in terms of the action-angle variables,

İ 5DWF0~ I ,f1 ,f2!,

ḟ15V1~ I !1DWF1~ I ,f1 ,f2!, ~21!

ḟ25V2~ I !1DWF2~ I ,f1 ,f2!.

Mezic and Wiggins@20# demonstrated how the first varia
tion in DW of Eq. ~21! about the unperturbed system~19!
may be used to generate a volume-preserving, th
dimensional map by integrating the perturbed motion ove
specified time intervalt. The perturbations in this context ar
time independent, and the system is autonomous. The sim
nature of the unperturbed problem~19! means that his pro-
cedure may be done explicitly; see the Appendix. At th
point recent results@22# for KAM-type theories for volume-
preserving maps in three dimensions may be applied. Un
the conditions of the theorem of Cheng and Sun@22#, as
given by Mezic and Wiggins@20# in theorem 5.1, there is a
nontrivial interval forDW aboutDW50 for which the per-
turbed system admits a family of invariant tori. Further the
is a Cantor set, with increasing measure asuDWu→0, such
that if the value ofI is a member of the set there is a corr
sponding invariant torus. An invariant torus of the map th
corresponds to a regular particle trajectory in physical sp
with the particle permanently suspended.

The development and application of KAM-type theori
to odd dimensional systems is nontrivial and has a qu
different character to standard KAM theory. Feingo
Kadanoff, and Piro@23#, Cheng and Sun@22#, and Xia@24#
all contributed to this work on three-dimensional, volum
preserving diffeomorphisms that may be characterized
having only one slowly varying action variable. While it
possible to consider whetherV1 and V2 are rationally re-
lated or not, or give strongly irrational rotation numbers, th
is not of itself sufficient in a three-dimensional system
determine the persistence of invariant tori. Xia@24# extended
the theory to higher dimensions.
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56 5437CHAOTIC MOTION OF NONSPHERICAL PARTICLES . . .
As summarized in the Appendix, the three-dimensio
map derived from the perturbed equations of motion is

I 85I 1DWF̃0~ I ,f1 ,f2!1O~DW2!,

f185f11V1~ I !1DWF̃1~ I ,f1 ,f2!1O~DW2!, ~22!

f285f21V2~ I !1DWF̃2~ I ,f1 ,f2!1O~DW2!;

the time intervalt51 gives a period-1 map. At this point w
depart from the earlier methods@20,22# and prefer to use the
result of Xia @24#, which is easier to apply in this contex
The requirements for the theorem on the existence of inv
ant tori of map~22! are thatF̃0 , F̃1 , andF̃2 are real analytic
functions in their arguments. The map is volume preserv
as the original differential equations are, and this propert
preserved by the perturbation expansion and integration
nally we also require thatV1 and V2 satisfy a nondegen
eracy condition

Q[UV18~ I !

V19

V28~ I !

V29~ I !U>d.0. ~23!

The above determinantQ, based on the derivatives ofV1
and V2 , must be positive and bounded away from zero
some positive numberd.

In previous treatments@20,22#, the time intervals were
rescaled to giveV15I , and a single condition onV29(I ) was
imposed. While convenient for developing theorems, this
not helpful for the practical verification of the condition
Simple manipulation, on the other hand, shows that

d/dI~V28/V18!5Q/V18
2. ~24!

It is thus sufficient to showd/dI(dV2 /dV1) is strictly posi-
tive and bounded away from zero, or, provided thatV18.0,
that

d/dV1~dV2 /dV1!>p.0 ~25!

for some positive numberp. Referring back to the numerica
results of Figs. 3 and 4, we may clearly see thatdV1 /dI is
indeed strictly positive. In Fig. 5 the numerical data ha
been refined and accurately matched to an interpolating fu
tion to giveV2 as a function ofV1 . From this interpolating
function, first and second derivatives ofV2 with respect to
V1 have been evaluated. The numerical values show, as
pected, a smooth continuous variation and this is not alte
by increased resolution. Condition~25! is clearly seen to be
satisfied in the two casesW50.1 and 0.4. It has also bee
verified in other cases.

The discussion of this section thus demonstrates that
manent suspension of nonspherical particles is still to be
pected in the context ofD50, where there is coupling o
particle orientation to the local vorticity but not to the loc
rate of strain. The numerical results of the following secti
show that suspension occurs too in the more general
with DÞ0.
l
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IV. REGULAR AND CHAOTIC MOTION

The more general features of nonspherical particle m
tion, restricted to a vertical plane as given by Eq.~5!, are
investigated using Poincare´ sections and numerical calcula
tions of the Lyapunov exponents. Poincare´ sections in the
(x1 ,x2) plane of the system are constructed by taking t
valuesx1 andx2 given by the intersections with sinu50. The
equations of motion~5! are periodic in the orientation angl
u, with a periodp, corresponding to the symmetry of a sph
roidal particle. The system is periodic too in the variablesx1
andx2 and values of these are mapped back, modulo 2, to
interval@0,2#. A Runge-Kutta fourth-order numerical schem
with a fixed time step size of 1023 has been used for the
integration of the system, and Henon’s@25# method is
adopted to obtain the sections. A typical Poincare´ section for
a spherical particle, corresponding to the unperturbed sys
~6!, is shown in Fig. 6 withW50.1. The sections, generate
by ten particles initially introduced in the unit ce
$(x1 ,x2)u0<x1 ,x2<1%, show clearly the regularity of the
motion and the separate regions of permanent particle
pension and particle settling. These may be compared w
the similar particle trajectories and level sets shown in Fig

Figure 7 shows a typical Poincare´ section produced by the
perturbed system of the form described in Sec. III. HereW
50.1 andDW50.2 whileD is zero. Three distinct types o
motion are observable: regular motion of suspended p

FIG. 5. First and second derivativesdV2 /dV1 ~solid line! and
d2V2 /dV1

2 ~broken line!, as functions ofV1 ; ~a! W50.1, and~b!
W50.4.
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5438 56H. SHIN AND M. R. MAXEY
ticles, regular motion of settling particles and chaotic mot
of settling particles. The regular motion, suspended or
tling, is analogous to that of the spherical particles shown
the Poincare´ sections of Fig. 6. The particle-suspending
gion in the Poincare´ section is composed of closed curv
defined by different initial conditions of a particle, and
seen in the lower left side of the figure. An enlarged vers
of this region is shown in Fig. 7~b!. The chaotic region ob-
served in Fig. 7~a! is produced by three different particl
trajectories. To verify that the region is indeed chaotic,
compute the Lyapunov exponents along a solution startin
a selected point in the region. The largest Lyapunov ex
nent for the solution starting at the point~0.1, 0.1, 0.0! con-
verges to the positive value of 0.53. The other two expone
converge to zero and to20.53.

The sum of the Lyapunov exponents should be zero, s
system~20! is volume preserving in phase space. That
second exponent is zero should be expected too~see Haken
@26#!, as the governing differential equations~20! are autono-
mous. For a general autonomous system of the form

ż5f~z!,

the equation governing the linear variationdz used in the
computation of Lyapunov exponents is

d/dt~dzi !5dzj] f i /]zj ,

evaluated along the pathz(t). The results depend on th
initial point z~0!, and the exponents are calculated as

l5 lim
t→`

1

t
ln@ idz~ t !i /idz~0!i #.

An orthogonalization procedure is used to select the prin
pal directions fordz(0) needed to obtain the second a
third exponents. For the autonomous system~20!, an initial
variation tangent to the solution path yields the solution

dz~ t !5f„z~ t !…@ idz~0!i /i f„z~0!…i #,

FIG. 6. Poincare´ section at sinu50 whenD50.0, W50.1, and
DW50.
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that remains tangent to the pathz(t). This solution gives one
of the principal directions and yields one of the Lyapun
exponents. For Eq.~20! the Euclidean norm off is bounded
and is in general nonzero. In the long-term limit, then, t
exponent for this variation is zero.

We have computed the largest Lyapunov exponents
several solutions starting at different initial conditions in t
chaotic region. Table I shows the results, which further c
firm the chaotic nature of the motion. We may conclude t
the Lyapunov exponents are dependent on the initial star
points even if we take into account numerical errors and
inability to take an infinitely long time interval.

The structure of the regular particle motion in the settli
region shown in the Poincare´ section of Fig. 7 is given by the
composition of crescent-shaped patterns, one in the up
part of the figure to the left and the other in the lower p
between aboutx150.8 and 1.0. The particles continuous
settle, alternately generating section data points on one o
lower crescents and a corresponding upper crescent, in

FIG. 7. ~a! Poincare´ section at sinu50 whenD50.0, W50.1,
and DW50.2; and~b! the closeup of the particle-suspending r
gion.
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56 5439CHAOTIC MOTION OF NONSPHERICAL PARTICLES . . .
direction ofx2 increasing. Each upper crescent and the c
responding lower one is produced by a single-particle tra
tory starting at a given initial position. The feature of regu
settling motion was not observed in the earlier study of M
lier and Maxey@17#, and only become apparent in this mo
careful investigation. A numerical calculation of th
Lyapunov exponents for particles in these crescent reg
shows that the exponents all converge to zero in the l
term, confirming the regular nature of the motion there.

Comparison of systems~20! and ~6! shows that Eq.~20!
has discrete fixed points, whereas Eq.~6! has an infinite
number of them. This change implies the breakdown o
two-dimensional invariant surface that separates a part
suspending region from a particle-settling region, such a
observed when we study Eq.~6!, under perturbation viaDW.
This would account for the emergence of chaotic motion
system ~20!. Since system~20! is volume preserving, it
would not have any kind of attractor. Thus a particle th
initially starts in a chaotic region would remain in the regi
visiting every part of the region. The survival of a particl
suspending region is to be expected from the results in S
III. Note that this region of permanent particle suspens
does not extend to the cell boundary atx150, unlike that of
the spherical particles shown in Fig. 6 and illustrated in F
2. Near this cell boundary the vertical flow velocity counte
acting particle settling is strongest. The effect of the pert
bationDW is to reduce the extent of the region for partic
suspension.

We restate the fully perturbed system, where not only
effect of the gravitational settling is included but also t
coupling of the particle orientation to the local rate of stra

dx1

dt
5sinpx1cospx21DWsinu cosu,

dx2

dt
52cospx1sinpx21W1DWsin2u, ~26!

du

dt
5p sinpx1sinpx222Dp cospx1cospx2sinu cosu.

We should note that system~26! is neither volume preserv
ing nor dissipative since the divergence of the vector field
22Dp cospx1cospx2cos2u, which may be both positive o
negative.

Even with the additional rate-of-strain term, a typic
Poincare´ section for system~26! does not greatly differ from
a typical Poincare´ section for Eq.~20!. Figure 8 shows a

TABLE I. The list of the largest Lyapunov exponents whenD
50.0, W150.3, andW250.1.

Initial points Largest Lyapunov exponents

~x150.1, x250.1, x350.0! 0.53
~x150.3, x250.2, x350.0! 0.52
~x150.7, x250.3, x350.0! 0.66
~x150.5, x250.5, x350.0! 0.66
~x150.7, x250.5, x350.0! 0.62
~x150.6, x250.8, x350.0! 0.64
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Poincare´ section constructed withD50.5 and the parameter
W50.4 andDW50.1. Both Figs. 7 and 8 show a region o
regular particle motion where the particles are suspen
permanently. The extent of this region in Fig. 8 is small
because of the larger value ofW. A region of regular particle
settling is observed too, again these sections have a cres
shaped pattern. The Lyapunov exponents for particle tra
tories corresponding to these two regions are all zero. Fig
8 shows further a third region of chaotic motion that is mo
extensive than in Fig. 7. Table II lists the comput
Lyapunov exponents taken along sample solutions wh
start at different points within the chaotic region. These po
tive exponent values verify that the region is indeed chao
The table also illustrates that the exponents are solution
pendent for system~26!.

Whether the sum of the Lyapunov exponents of the s
tem at given parameter values is positive, zero, or nega
raises an interesting question, since system~26! is neither
volume preserving or dissipative. A Lyapunov exponent
orderp, s (p)(x0 ,Vp), wherex0 is the initial position andVp
is the volume of ap-dimensional parallelepiped with edge
w1 ,w2 ,...,wp , is

sp~x0 ,Vp!5 lim
t→`

1

t
ln

iVp~x0 ,t !i
iVp~x0,0!i .

According to Oseledec@27# and Bennettinet al. @28#, s (p) is
the sum of thep largest Lyapunov exponents

FIG. 8. Poincare´ section at sinu50 whenD50.5, W50.4, and
DW50.1.

TABLE II. The list of the largest Lyapunov exponents whe
D50.5, W150.5, andW250.4.

Initial points Largest Lyapunov exponents

~x150.3, x250.15,x350.0! 0.40
~x150.6, x2 50.3, x350.0! 0.44
~x150.7, x250.55,x350.0! 0.46
~x150.4, x250.8, x350.0! 0.50



m
tio

se
ds
a

f
i

-
ne

i

l-

a
e
c

e
h
is
in

a
it
o
t

ca

la
n

he

q
tly
en
or

le

-

y

e
e

nd
tion.
-

e

5440 56H. SHIN AND M. R. MAXEY
s~p!5s11s21•••1sp

for almost all initialVp’s. The relationship between the su
of the Lyapunov exponents and the expansion or contrac
of the volume of the system is then

iVp~ t !i'iVp~0!iets~3!
, ~27!

whereVp(t) is the volume evolution through time. The ca
wheres (3) is positive should be eliminated on the groun
that a volume cannot expand forever in a bounded sp
such as the space where system~26! is defined. Thuss (3),
the sum of the Lyapunov exponents, must be negative
zero for the system~26! in a chaotic region for all ranges o
the values of the parameters. Obviously for regular motion
non-chaotic regionss (3)50. A net reduction in volume, cor
responding to the decrease of infinitesimal volumes gover
by relationship~27!, will occur whens (3) is negative. Cal-
culations for several of the chaotic trajectories illustrated
Fig. 9 give sample values ofs (3) equal to zero or
20.00215 and20.00268. Within the precision of these ca
culations it is clear that negative values ofs (3) do arise.
There is no consistent trend for all chaotic particle motion
the system is not ergodic, and the set of Lyapunov expon
values varies with the initial conditions of the particle traje
tory.

A tendency toward negative values ofs (3) is consistent
with the physical characteristics of the particle motion. Wh
D is nonzero, a particle will turn tending to align itself wit
the local principal axes for the strain rate of the flow. Th
will restrict the range of possible particle orientations
phase space.

V. GENERAL MOTION

We now consider the general system of equations~3! and
~4!, where the motion is no longer restricted to a vertic
plane and a particle is free to move in three dimensions w
arbitrary orientation. As done previously, the two contexts
D50 andDÞ0, are considered separately, corresponding
whether or not the particle orientation is coupled to the lo
rate of strain. As the Poincare´ sections of Sec. IV have
shown, a coupling of the particle orientation to the trans
tional motion is the essential ingredient for chaotic motio
This occurs as a nonspherical particleDWÞ0 turns in re-
sponse to the local vorticity. The additional coupling to t
rate of strain by nonzero values ofD does not dramatically
alter this behavior, at least for the restricted motion in
vertical plane.

A. D50

In the absence of coupling to the local rate of strain in E
~4!, the system of equations may be simplified significan
For the two-dimensional cellular flow there is no compon
of vorticity that would alter the value of the symmetry vect
componentm3 in Eq. ~4c!. As a resultm3 is a constant, be it
nonzero or zero. As the vectorm has unit size it follows that
throughout the motion

~m1
21m2

2512m3
25a2!5const. ~28!
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The values of the componentsm1 ,m2 are restricted to be 0
<m1 ,m2<a<1 and the particle moves with a fixed ang
relative to the vertical plane. A new orientation angleû may
be defined form1 ,m2 , giving the particle orientation as pro
jected onto a vertical plane:

m15a cosû,

m25asinû. ~29!

The other equations~4a! and ~4b!, governing the particle
orientation, simply imply a rotation ofû in response to the
local vorticity,

dû

dt
5p sinpx1sinpx2 . ~30!

Beyond this, Eq.~3!, governing the particle position, ma
be written in terms ofû in a manner analogous to Eq.~5!,

dx1

dt
5sinpx1cospx21a2DW cosû sinû,

dx2

dt
52cospx1sinpx21W1a2DW sin2û, ~31!

dx3

dt
5a~12a2!1/2DW sinû.

A comparison of Eqs.~31! for x1 and x2 with the corre-
sponding Eqs.~5! shows that the two sets are identical if th
value of DW in Eqs. ~5! is replaced by the scaled valu
a2DW. The rotation ofû matches Eqs.~5! too. The third
coordinatex3 has no effect on the other variables, a
changes passively in response to the changing orienta
Changes in the displacementx3 are due solely to the compo

FIG. 9. Poincare´ section of the general motion at sinû50 for
D50, W50.4, andDW50.1; the section is projected onto th
(x1 ,x2) plane.
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56 5441CHAOTIC MOTION OF NONSPHERICAL PARTICLES . . .
nent of the settling velocity of a nonspherical particle
rected out of the vertical plane.

If the general motion, forD50, is projected onto the
(x1 ,x2) plane the system of equations~30! and ~31! is en-
tirely equivalent to the previously described motion confin
to a vertical plane, but with a reduced value ofDW. The
persistence of regular motion with particle suspension an
regions of regular settling motion are to be expected the
this more general context. This demonstrates too the m
general significance of the previous results. Different init
values ofm3 will lead to different results, but as 0<a<1
and a2DW controls the degree to which the nonspheri
shape affects the motion, the regions of regular motion
suspension or settling will always be at least as large as th
given previously for the same value ofDW.

These observations are supported by numerical res
Figure 9 shows a Poincare´ section of this general motion fo
D50, where the section, taken at sinû50, has been pro-

FIG. 10. Poincare´ section of the general motion at sinu50 for
D50.5, W50.4, andDW50.1, projected onto the (x1 ,x2) plane:
~a! full view; ~b! a close-up view in the regular settling region.
d
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jected onto the (x1 ,x2) plane. The settling velocity param
etersW and DW are 0.4 and 0.1, respectively. The initi
value ofm3 is 0.941, so that the value ofa is 0.339 and the
effective value of the perturbation,a2DW equals 0.0115.
The resulting Poincare´ section is very similar to that of Fig
7, with clearly discernible regions of regular particle suspe
sion, regular settling and chaotic settling. The relatively lo
value of the effective perturbation gives a larger region
regular particle suspension extending further toward the
boundary atx150. The crescent patterns associated with
regular settling lie in a fairly well-defined ‘‘channel’’ and th
chaotic motion occurring in the intervening region.

B. DÞ0

In the most general cuontext where the coupling to
rate of strain in three dimensions is included andD is non-
zero then no major simplification of Eqs.~3! and ~4! is pos-
sible. The previously obtained results still provide useful
dications as to the typical particle motion. The thi
coordinatex3 , for displacement out of the vertical plane, st
has no influence on the other variables, and simply respo
passively to the changing particle orientation. The project
of the motion onto the vertical (x1 ,x2) plane is the most
significant. The orientation of the symmetry axism is still
strongly governed by the local vorticity, but the coupling
the rate of strain causes them3 component to vary continu
ously. The unit vectorm can be expressed in terms of tw
angle variables u and f with m equal to
(sinf cosu,sinf sinu,cosf). The rotation~4! of m is given by
the two evolutionary equations foru andf as

du

dt
5p sinpx1sinpx22DE~x1 ,x2!sin2u,

~32!

df

dt
5

1

2
DE~x1 ,x2!sin2f cos2u.

Whenf5p/2, m3 is zero, and the equation foru is the same
as Eq.~26c!. If D is zero thenf is constant, and the resu
matches Eq.~30!.

Poincare´ sections are obtained for the syste
(x1 ,x2 ,u,f), taken at sinu50, and projected onto the
(x1 ,x2) plane, with no distinction made as to the value off.
A Poincarésection is shown in Fig. 10 forD50.5, and again
the values ofW andDW are 0.4 and 0.1, respectively. Th
same general features are observed as before. In the
jected Poincare´ section of Fig. 10~a!, there is a region of
regular motion, approximately centered onx250.5 and
0.25,x1,0.5, where the data points correspond to partic
permanently suspended by the flow within the original c
into which they were introduced. There is also a portion
the section showing a chaotic settling motion, and, somew
harder to distinguish, a region of regular settling motio
However, an enlargement of a portion of the Poincare´ sec-
tion, shown in Fig. 10~b!, shows clearly the characteristi
crescent-shaped pattern of data points similar to those
previously in Figs. 7 and 10. As before, the particles se
continuously in a quasiperiodic motion, generating d
points in the section alternately on the crescent pattern in
lower and upper cells.
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5442 56H. SHIN AND M. R. MAXEY
Numerical results for some of the Lyapunov expone
have been calculated for the same conditions ofD50.5, W
50.4, and DW50.1. A particle introduced at x
5(0.8,0.5,0.0) with orientationm5(0.339,0,0.941) lies
within the region of regular settling motion, and the large
Lyapunov exponent indeed converges to zero. A particle
troduced with the same initial conditions, but withx1
50.65, settles chaotically. The largest Lyapunov expon
for this particle is 0.39.

VI. CONCLUSION

The results in this paper illustrate the structural feature
the motion of nonspherical particles settling in a steady, n
uniform flow. The possibilities of regular motion with pa
ticles suspended by the flow or settling out, together w
chaotic settling are all demonstrated. The persistence
regular settling had not been previously observed in ea
work @17#. The independent variation of the parametersDW
andD confirms that the key ingredient for the chaotic tum
bling motion is the coupling of particle orientation to th
settling velocity, and the rotation of the particle in respon
to the changing local vorticity as it settles in the nonunifo
flow. The inclusion of the coupling of the orientation to th
rate of strain in the presence of vorticity does not sign
cantly alter the results. While these results have been der
for a periodic cellular flow system the same principles sho
apply in other nonuniform shear flows, and similar featu
should be observable in shear layers or jet flows. The b
requirement is that there be a circulatory motion in a verti
plane with a nonuniform distribution of horizontal vorticity

The theoretical arguments presented to demonstrate
persistence of particle suspension are an application of
theory of Mezic and Wiggins@20# for systems of one-action
and two-angle variables. In the process of verifying the c
ditions for the theory an alternative formulation is applied
the nondegeneracy condition. This is easier to use, and
be more readily applied to computational results. Extensi
of Hamiltonian theory to systems that are volume preserv
in phase space have a number of applications to mixing
fluid flow systems and the dynamics of particle transpo
Recent work in this area includes the paper by Cartwrig
Feingold, and Piro@29#.

In the earlier study by Mallier and Maxey@17# specific
aspect ratios of spheroidal particles were used to set va
of D, W, andDW and to determine the overall features
the motion. For example a prolate spheroid with aspect r
l52 the value ofD is 0.6, and the relative value ofDW is
approximately 0.15W. For W50.24, about 40% of particle
initially distributed uniformly in a unit cell will be perma
nently suspended, as compared to between 58% and 55%
spherical particles with settling velocities equal toW or W
1DW, respectively. Similarly ifW50.48 or 0.72 about 22%
or 8.5% of the particles are retained compared to a rang
35–30% and 17–11% for spherical particles. The nonsph
cal shape reduces the particle retention below the level
would be expected for a spherical particle even at the hig
terminal velocity W1DW. Departures from a spherica
shape were found also to increase the average particle
tling velocity.

Finally, the chaotic tumbling is potentially an importa
s
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mechanism for the dispersion of small, nonspherical partic
settling under gravity. Previously Brenner@30,31# and Dill
and Brenner@32# demonstrated that small particles subject
Brownian motion will be dispersed in the horizontal dire
tion. This is due to the dependence of settling velocity
orientation, and the horizontal motion of particles not align
with the vertical. Under the influence of Brownian motio
these particles have a random orientation that gives rise
Taylor dispersion coefficient significantly greater than th
due to translational Brownian motion. Brownian motion
only appreciable for very small particles, 5mm in diameter
in air for example, and even smaller in liquid flows. Chao
mixing in a nonuniform shear flow by contrast should
effective over a wide range of scales and especially for lar
particles. This chaotic dispersion of nonspherical partic
even in a steady laminar flow will have similarities to th
chaotic dispersion of heavy, inertial particles studied
Crisantiet al. @5# and Wanget al. @33#.
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APPENDIX: CONSTRUCTION OF THE MAP

The perturbed system of differential equations~20! in
terms of (z1,z2,z3) is

dz1/dt5 f 1~z1,z2!1DWg1~z3!,

dz2/dt5 f 2~z1,z2!1DWg2~z3!, ~A1!

dz3/dt5 f 3~z1,z2!,

where the functions are defined as

f 15sinpz1cospz2,

f 252cospz1sinpz21W,

f 35p sinpz1sinpz2, ~A2!

g15sinz3cosz3,

g25sin2z3.

Within the region of spherical particle suspension,H.0, the
change of variables from (z1,z2,z3) to (I ,f1,f2) given by
Eqs.~10!–~18! is well defined and a particular pair of value
of z1,z2 will lie on some level set ofH. The angle variables
f1f2 determine the position on the level set and the part
orientation. The variablesz1,z2,z3 may then be expressed a
functions ofI ,f1, andf2. An application of the chain rule
gives the corresponding differential equations
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F İ

ḟ1

ḟ2

G5F ]I /]z1 ]I /]z2 0

]f1/]z1 ]f1/]z2 0

]f2/]z1 ]f2/]z2 ]f2/]z3

GF f 11DWg1

f 21DWg2

f 3

G
~A3!

These may be written in the more compact form~21!,

İ 5DWF0~ I ,f1,f2!,

ḟ15V1~ I !1DWF1~ I ,f1,f2!, ~A4!

ḟ25V2~ I !1DWF2~ I ,f1,f2!.

The construction of the iterated map follows Mezic a
Wiggins @20# and begins with a regular perturbation expa
sion for the motionI ,f1,f2 for small values ofDW valid for
times ofO(1). Thus with the initial valuesf1

0 andf2
2 of the

angle variables,

I DW~ t !5I 01DWI1~ t !1O@~DW!2#

f1
DW~ t !5f1

01V1~ I 0!t1DWf1
1~ t !1O@~DW!2# ~A5!

f2
DW~ t !5f2

01V2~ I 0!t1DWf2
1~ t !1O@~D jW!2#.

The functionsI 1(t),f1
1(t), andf2

1(t) satisfy the variational
equations

İ 15F0@ I 0,f1
01V1~ I 0!t,f2

01V2~ I 0!t#,

ḟ1
15

]V1

]I
~ I 0I 11F1@ I 0,f1

01V1~ I 0!t,f2
01V2I ~ I 0!t#, ~A6!

ḟ2
15

]V2

]I
~ I 0!I 11F2@ I 0,f1

01V1~ I 0!t,f2
01V2~ I 0!t#.

We seek to construct a map that advances the varia
I DW,f1

DW,f2DW over a time intervalt51 from the initial
valuesI 0,f1

0,f2
0. The perturbation expansion gives the a

proximate map
s.

nd
-

es

-

~ I 0,f1
0,f20→@ I 01DWI1~t!,f1

01V1~ I 0!t1DWf1
1~t!,

f2
01V2~ I 0!t1DWf2

1~t!]. ~A7!

Expressions forI 1(t),f1
1(t), andf2

1(t) can be obtained
by solving Eqs.~A6!, which for t51 yields

I 1~1!5E
0

1

F1@ I 0,f1
01V1I ~0!t,

3f2
01V2~ I 0!t#dt[F̃0~ I 0,f

1
0,f2

0

!,

f1
1~1!5E

0

1

F1@ I 0,f1
01V1~ I 0!t,f2

01V2~ I 0!t#dt

1
]V1

]I
~ I 0!E

0

1E
0

t

F0@ I 0,f1
01V1~ I 0!z,

3f2
01V2~ I 0!z#dzdt[F̃1~ I 0,f1

0,f2
0!, ~A8!

f2
1~1!5E

0

1

F2@ I 0,f1
01V1~ I 0!t,f2

01V2~ I 0!t#dt

1
]V2

]I
I 0E

0

1E
0

t

F0@ I 0,f1
01V1~ I 0!z,

3f2
01V2~ I 0!z#dzdt[F̃2~ I 0,f1

0,f2
0!.

These results yield the final form of the volume-preserv
map

I→I 1DWF̃0~ I ,f1,f2!1O~DW2!,

f1→f11V1~ I !1DWF̃1~ I ,f1,f2!1O~DW2!, ~A9!

f2→f21V2~ I !1WF̃2~ I ,f1,f2!1O~DW2!.

Other, shorter time intervalst may be used to construct sim
lar maps as required.
s.

-
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